Vertex Cover Gets Faster and Harder on Low Degree Graphs
نویسندگان
چکیده
The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P , and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and we also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637n.
منابع مشابه
Some Results on Forgotten Topological Coindex
The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملFaster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3
متن کامل
Maximum Independent Set in Graphs of Average Degree at Most Three in O(1.08537n){\mathcal O}(1.08537^n)
We show that Maximum Independent Set on connected graphs of average degree at most three can be solved in O(1.08537) time and linear space. This improves previous results on graphs of maximum degree three, as our connectivity requirement only functions to ensure that each connected component has average degree at most three. We link this result to exact algorithms of Maximum Independent Set on ...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کامل